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Abstract: The general equation is developed for the simple one-dimensional case, and then the results are extended 

to the three-dimensional case. We have derived equation in Cartesian coordinate system and radial flow in an 

aquifer for confined aquifer and also given a simple analytical solution for estimation of drawdowns and 

groundwater flow rates into two-dimensional excavation, such as those in open-cut strip mines, for confined, leaky 

aquifers. 
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1.    INTRODUCTION 

The first step in developing a mathematical model of almost any system is to formulate what are known as general 

equations. General equations are differential equations that derive from the physical principles governing the process that 

is to be modeled. In the case of subsurface flow, the relevant physical principles are Darcy’s law and mass balance. By 

combining the mathematical relations describing these principles, it is possible to come up with a general groundwater 

flow equation, which is partial differential equation. If a mathematical model obeys the general equation, it is consistent 

with Darcy’s law and mass balance. For anyone using or developing models, it is helpful to understand the general 

equation and how it relates to the underlying physical principles. There are several different forms of the general flow 

equation depending on whether the flow is saturated or unsaturated, Two-dimensional or three-dimensional, isotropic or 

anisotropic, and transient or steady state.  

2.    MODELING OF THREE-DIMENSIONALSATURATED FLOW 

First, the general equation is developed for the simple one-dimensional case, and then the results are extended to the 

three-dimensional case [1]. In a typical mass balance analysis, the net flux of mass through the boundary of an element is 

equated to the rate of change of mass within the element. We will consider the mass balance for a small rectangular 

element within the saturated zone. The dimensions of the element are fixed in space, regardless of compression or dilation 

of the aquifer matrix. For example, if the aquifer compresses, more aquifer solids will be squeezed into the element and 

some water will be squeezed out of it. To make the derivation of the flow equations as clear as possible, we will assume 

that the macroscopic flow in the vicinity of this element is one-dimensional in the   direction:               The 

mass flux (mass/time) of water in through the left side of the element is                                                                                                   

  ( )  ( )                                                                         (2.1)   

Where   ( ) the water density at is coordinate   and     ( ) is the specific discharge at coordinate  . The corresponding 

flux out through the right side of the element is                                                                                      

  (    )   (    )                                                      (2.2)     

When these two fluxes are identical, the flow is steady state. When they differ, the flow is transient and there must be a 

change in the mass of water stored in the element. According to the definition of specific storage Ss, the change in the 
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volume of water stored in an element of volume    when the head changes an amount    is                                          

                                                                                    (2.3)                                                       

For the element and a time interval   , this becomes                                                                     

   

  
   

  

  
                                                                       (2.4)      

The rate of change in the mass of water stored in the element is therefore                                             

  

  
   

   

  
 =     

  

  
                                                     (2.5)   

The rate       is expressed as a partial derivative because in this case,   is a function of two variables,    and  .  

Equations (2.1), (2.2), and (2.5) describe all the mass fluxes [M/T] into the element. For mass balance or continuity, the 

mass flux into the element minus the mass flux out equals the rate of change of mass stored within the element.                                                            

  ( )  ( )       (    )  (    )           
  

  
                        (2.6)    

Dividing by         and rearranging gives                                                                     

 0
  (    )  (    )   ( )  ( )

  
1         

  

  
                            (2.7)    

Recalling some differential calculus, the left-hand side is a derivative in the limit as    shrinks to zero. 

 
 (    )

  
       

  

  
                                                                (2.8)  

Expanding the derivative on the left side of the above equation, it becomes                                 

   
   

  
   

   

  
      

  

  
                                                   (2.9)  

The second term in the above equation is generally orders of magnitude smaller than the first one.   

  
   

  
   

   

  
                                                                      (2.10)  

Neglecting the second term in Eq. (2.9), the continuity condition can be simplified to                                 

 
   

  
   

  

  
                                                                          (2.11)  

In most situations, Equation (2.10) is true and the above equation governs, but more rigorous theories may be needed for 

flow in special circumstances. Derivations of more rigorous general flow equations are given by Freeze and Cherry 

(1979), Verruijt (1969), and Gambolati (1973, 1974); these account for the velocity of the deforming matrix in very low 

conductivity materials and fluid density variations. Substituting the definition of     given by Darcy’s law that is    

   
  

  
 , into Equation (2.11)  gives the one-dimensional general equation for saturated groundwater flow[3]. 

 

  
.  

  

  
/      

  

  
                                                                   (2.12)  

If the preceding analysis were carried out without the restriction of one-dimensional flow, there would be additional flux 

terms for the         directions that are similar to the flux term for the   direction. For three-dimensional flow, the 

general equation is                                                                                   
 

  
.  

  

  
/  

 

  
.  

  

  
/  

 

  
.  

  

  
/    

  

  
                                   (2.13)  

A mathematical model of head ( (       )     . . .) must obey this partial differential equation if it is to be consistent 

with Darcy’s law and mass balance. Equation (2.13) is the most universal form of the saturated flow equation, allowing 

flow in all three directions, transient flow (       )  heterogeneous conductivities (for example,     ( )), and 

anisotropic hydraulic conductivity (          ). 
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3.    HOMOGENEOUS HYDRAULIC CONDUCTIVITIES 

The flow equation can be derived from Eq. (2.13) by making various simplifying assumptions. If the hydraulic 

conductivity is homogeneous (i.e. independent of          ), then general equation can be written as [1]. 

  
   

      
   

      
   

      
  

  
                                                  (3.1) 

4.    HOMOGENEOUS AND ISOTROPIC HYDRAULIC CONDUCTIVITIES 

When   is assumed to be both homogeneous and isotropic (              ), the Eq. (3.1) reduces to 

   

     
   

    
   

        
  

 

  

  
                                                   (4.1)        

The symbol    is called the Laplacian operator, and it is shorthand for the sum of the second derivatives,  

  ( )   
  ( )

    
  ( )

    
  ( )

                                                              (4.2) 

5.    STEADY FLOW WITH HOMOGENEOUS, ISOTROPIC HYDRAULIC CONDUCTIVITIES 

So far, all forms of the general flow equation presented here have included a term for storage changes involved with 

transient flow. If instead the flow is steady state,      = 0 and the right-hand side of any of the previous equations 

becomes zero. For example, the general equation for steady flow with homogeneous, isotropic    is [3]. 

                                                                            (5.1)   

This is a common partial differential equation known as the Laplace equation. It is well studied, having numerous 

applications in fluid flow, heat conduction, electrostatics, and elasticity. It is named after French astronomer and 

mathematician Pierre de Laplace (1749-1827). There exist hundreds of known solutions to the Laplace equation, many of 

which apply directly to common groundwater flow conditions.  Any of the flow equations presented here can be reduced 

from three dimensions to two or one by dropping the    and /or   terms from the equation. Dropping the   dimension, for 

example, implies that the  -direction term in the general equation equals zero. 

 

  
.  

  

  
/ = 0                                                                  (5.2) 

This would be the case if       , or even if           

6.    CONFINED OR UNCONFINED AQUIFER 

 The flow towards a well, situated in homogeneous and isotropic confined or unconfined aquifer is radially symmetric. 

The cone of depression caused due to constant pumping through a single well situated at (0,0) in a confined aquifer. The 

cone of impression caused due to constant recharge through the well. In case of homogeneous and isotropic medium, the 

cone of depression or cone of impression is radially symmetrical. The governing equation derived earlier in Cartesian 

coordinate system for confined and unconfined aquifer can also be derived for radial flow in an aquifer. We will derive 

the governing flow equation for confined aquifer in polar coordinate system. The main objective of this conversion is to 

make the 2D flow problem a 1D flow problem. The resulting 1D problem will be simpler to solve.  

7.    RADIAL FLOW IN A CONFINED AQUIFER 

 Let us consider a case of radial flow to a single well in a confined aquifer. The aquifers are homogeneous and isotropic 

and have constant thickness of b. The hydraulic conductivity of the aquifer is K. The pumping rate (Q) of the aquifer is 

constant and the well diameter is infinitesimally small. The well is fully penetrated into the entire thickness of the 

confined aquifer. This is necessary to make the flow essentially horizontal. The potential head in the aquifer prior to 

pumping is uniform throughout the aquifer [7]. Consider the control volume. The inflow to the control volume is    and 

the outflow from the control volume is    
   

  
    The net inflow to the control volume is 



  ISSN 2394-9651 

International Journal of Novel Research in Physics Chemistry & Mathematics 
Vol. 3, Issue 2, pp: (1-16), Month: May - August 2016, Available at: www.noveltyjournals.com 

 

Page | 4 
Novelty Journals 

 

     .   
   

  
  /   

   

  
                                                                      (7.1)      

Applying principle of mass conservation on the control volume.                                                           

Inflow - outflow = Time rate of change in volumetric storage                                                                                                

Time rate of change in volumetric storage  
  

  
  .

  

   
/

  

  
                               (7.2)                   

  

  
    

  

  
                                                                                            (7.3)                                                                    

 
  

   
                                                                              

Where    is the specific storage. Replacing   by       , we have                                                            

  

  
    

  

  
         

  

  
                                                                  (7.4)                 

       
  

 

  

  
        

  

  
                                                               (7.5)       

Where     is the aquifer storativity which is equal to     . Putting (7.5) in (7.3), we have  

 
   

  
          

  

  
                                                                                (7.6)         

As per Darcy's law                                                                                                                                         

      
  

  
       

  

  
      

  

  
       [Putting       ]              (7.7)  

Putting in equation (7.6)                                                                                                                                   

 
 

  
.    

  

  
/           

  

  
                                                                   (7.8)  

Simplifying,  
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/  

  

 

  

  
                                                                                        (7.9)  

   

    
 

 

  

  
 

  

 

  

  
                                                                                         (7.10)  

This is the flow equation for radial flow into a well for confined homogeneous and isotropic aquifer. In case of steady 

state condition, the governing equation becomes,  

   

    
 

 

  

  
                                                                                               (7.11)  

8.    STEADY FLOW IN CONFINED AQUIFER 

 In case of steady flow in confined aquifer, the flow equation becomes [5].  

Or,                                                       
 

 

 

  
. 

  

  
/                                                                                           (8.1)        

Or,                                                       
 

  
. 

  

  
/                                                                                              (8.2) 

Integrating,                                      ∫
 

  
. 

  

  
/  ∫                                                                                         (8.3) 

Or,                                                     
  

  
                                                                                                       (8.4)  

Now, Darcy's law can be expressed as                                                                                                                   

      
  

  
 

 

   
  

  

  
                                                             (8.5)  

Therefore, the equation (11.4) can be written as                                                                                      

 
  

  
 

 

   
                                                                                             (8.6)                                                     

    
 

   

  

 
                                                                                      (8.7)  

Now integrating, we have  
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 ∫   
 

   
∫

  

 
                                                                                               (8.8)  

   
 

   
  ( )                                                                                              (8.9)  

 

Fig. 8.1: Confined aquifer 

Now consider the Fig. 8.1. For                         Putting it in equation (8.4), we get  

   
 

   
  (  )                                                                         (8.10)                    

and,        
 

   
  ( )                                                                (8.11) 

From these two equations, we have                                                                                                  

      
 

   
  ( )  

 

   
  (  )                                                  (8.12)                                  

       
 

   
  .

 

  
/                                                                (8.13)  

Knowing hydraulic head at the well, the equation (8.13) can be used to calculate steady state hydraulic head for any 

values of r. This equation can also be used for estimation of aquifer transmissivity. For calculating aquifer transmissivity, 

the equation can be written as,                                                              

  
 

  (     )
  .

 

  
/                                                              (8.14)  

9.    FLOW EQUATION FOR UNSTEADY FLOW IN CONFINED AQUIFER 

We have already derived the flow equation for unsteady flow in confined aquifer. The equation can be written as [3],  

 
   

    
 

 

  

  
 

  

 

  

  
                                                                     (9.1)  

Theis (1935) obtained the solution of the equation. His solution was based on the analogy between groundwater flow and 

heat conduction. Considering the following boundary conditions,  

                        

                      
 

The solution of the equation for t ≥ 0 is  

 (   )  
 

   
 ( )                                                                                     (9.2)  

Where,  (   ) is the draw down at a radial distance r from, the well at time t,     
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                  ( )  ∫

   

 
  

 

 

 

 ( ) is the exponential integration and is known as well function. The well function  ( ) can be approximated as  

 ( )            ( )    
  

    
 

  

    
 

  

    
                                             (9.3)  

10.    THEIS ANALYTICAL SOLUTION 

 Theis analytical solution was based on the analogy between groundwater flow and heat conduction. In case of heat 

conduction, the change in temperature (v) at a point  (   ) at any time t due to an instantaneous line source( )coinciding 

with the   axis can be obtained using the following equation given by [11] and Carslaw (1921).  

 (     )  
 

    
  (     )                                                               (10.1)  

Here, k is the Kelvin's coefficient of diffusivity. For continuous source or sink  ( ) 

 (     )  ∫
 ( )

   (    )

 

 
  (     )   (   )                                        (10.2)  

For constant source  ( )     

 (     )  
 

   
∫ [

  (     )   (   )

(   )
]   

 

 
                                                       (10.3)  

Considering  

  
     

  (   )
                                                                        (10.4) 

When,  

                    
     

   
  

                                           

                             
     

  

 

    

                                                             (10.5) 

Then,  

 (     )  
 

   
∫ 0

   

(   )
1

     

  

 

    
 
     

   

                                               (10.6) 

 (     )  
 

   
∫ 0

   

  1    
 
     

   

                                                               (10.7) 

 (     )  
 

   
∫

   

 
  

 
     

   

                                                             (10.8) 

The equation (10.8) derived for calculation of change in temperature can also be applied for calculation of drawdown at 

any point (   ) at any time t. The coefficient of diffusivity is analogous to the coefficient of transmissivity of the aquifer 

divided by the specific storage (  ) of the aquifer. The continuous strength of the source and sink is analogous to the 

discharge rate divided by the specific storage. The equation (10.8) in case of drawdown in confined aquifer can be written 

as  

 (     )  
    

      
∫

   

 
  

 
     

 (   ) 

                                                       (10.9)  

 (     )  
 

   
∫

   

 
  

 
  (     )

   

                                                      (10.10)  

Putting                
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 (   )  
 

   
∫

   

 
  

 
    

   

                                                                        (10.11)  

Equation (10.11) can be used to calculate the drawdown at a distance of r at any time t when water is pumped at a 

constant rate of Q from the well. This solution is valid homogeneous isotropic aquifer having infinite areal extent and 

uniform thickness.  

11.    WELLS IN A LEAKY CONFINED AQUIFER 

A confined aquifer will be called a leaky aquifer when water is withdrawn from the confined aquifer, there is a vertical 

flow from the overlaying aquitard as shown in Fig. 11.1. After the starts of the pumping, the lowering of piezometric head 

in the aquifer builds hydraulic gradient within the aquitard. As a result of the hydraulic gradient, downward vertical 

groundwater flow takes place through the aquitard [9].  

 

Fig.  11.1 A leaky confined aquifer 

The drawdown of the piezometric surface can be obtained by (Hantush 1956, Cobb et al. 1982)  

  
 

   
 .  

 

 
/                                                                        (11.1)  

Where  

 .  
 

 
/  ∫    *      ,   (   )-+ (   )    (  )  

 

 
                         (11.2)  

  
   

 

   
                                                                                          (11.3) 

 

  
 

 

√  (    )
                                                                 (11.4) 

Where T is the transmissivity of the leaky confined aquifer, K' is the vertical hydraulic conductivity of the aquitard, and b' 

is the thickness of the aquitard.                               

12.    PARTIALLY PENETRATING WELL 

In a well when the intake of the well is less than the thickness of the well, then the well is called partially penetrated well. 

In case of partially penetrated well, the flow lines are not truly horizontal near the well. The flow lines are curved upward 

or downward near the well. However, at a distance far away from the well, the flow lines are horizontal. As a result of 

non-horizontal nature of the flow lines near the well, the length of the flow lines are more than the case of a fully 

penetrated well. Thus the drawdown in case of partially penetrating well is more than the fully penetrating well. Fig. 12.1 

shows a partially penetrated well [3].  
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Fig. 12.1 Partially penetrated well 

The drawdown of the partially penetrated well can be written as  

                                                                               (12.1) 

Where, S is the drawdown of the fully penetrated well and Δs is the additional drawdown due to partial penetration.  

For the Fig. 12.2 given below,  

 

Fig. 12.2 Partially penetrated well 

The additional drawdown, Δs can be calculated as [12]  

   
 

   

   

 
  .

(   )  

  
/                                                                     (12.2) 

13.    CHANGE IN HYDRAULIC PROPERTIES NEAR A WELL 

Consider a case of a pumping well as shown in Fig. 13.1 below [9].  

 

Fig. 13.1 Pumping well 
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The discharge of the well can be expressed as  

                                                                                       (13.1) 

                                                                                  (13.2)  

                                                                                      (13.3)  

Here                                

So                                  

Therefore, velocity near the well is more than the velocity away from the well. Due to the high velocity in the vicinity of 

the well , the fine particles that are present in the aquifer formation are moved with the flow of water. As a result of this 

phenomenon, the permeability of the aquifer medium will be more in the vicinity of the well.  

 

Fig. 13.2 Recharge well 

Now, in case of recharge well (Fig. 13.2), the impurities that are present in water are also move along with the injected 

water to the aquifer medium. As the velocity of flow in the vicinity of the well is higher, the impurities present in the 

water will move along with the water and will settle down at some distance from the well. As a result of the settlement of 

impurities, the permeability of the medium will reduce. As such the reduction on permeability should be considered in 

modeling the flow in an aquifer due to artificial recharge.  

14.    MULTIPLE WELL SYSTEMS 

In a well field, when cone of depression of one well overlaps with the cone of depression of other wells, then the actual 

drawdown will be more than the drawdown calculated for the individual well (Fig. 13.2). In this case, the actual 

drawdown can be calculated using the principle of superposition of linear system [9].  

 

Fig. 14.1 Multiple well system 

For a well field of n wells, the actual drawdown can be calculated as  
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  (   )    (   )    (   )    (   )    (   )    (   )      (   )              (14.1) 

or,             (   )  ∑   (   )
 
    

Where Sa is the actual drawdown at a distance r at time t , Si is the drawdown at that point caused by the discharge of the 

well i at time t, n is the number of wells in the well fields.  

Fig. 14.2 explains the interference of cone of depression of two pumping wells. The coordinates of the two wells are (3,5) 

and (7,5). The individual cone of depression of the two wells are shown on Fig. 14.2 (a) and (b). The combine effect of 

the two wells can be obtained by adding the individual drawdown of the two wells, i.e. if drawdown of the first well is S1 

and the second well is S2, the combine drawdown will be S = S1 + S2. The combine effect is shown in Fig. 14.2(c).  

 
a) Drawdown of first well                                       (b) Drawdown of second well 

 

(c) Combine drawdown 

Fig. 14.2 Cone of depression of multiple wells system 

15.    WELLS NEAR AQUIFER BOUNDARIES 

The assumption of infinite horizontal extend is no longer valid when water is pumped from a well near the aquifer 

boundary. Method of superposition can be used to implement the effect of aquifer boundary by adding a well at different 

location. The well that creates the same effect as boundary is called image well.  

16.    WELL NEAR A STREAM 

Fig. 16.1 shows a well near a stream. In this case, the actual drawdown at the stream boundary will be zero as stream is 

considered as an infinite source. In order to maintain zero drawdown, an imaginary recharge well is considered at a 

distance equal to the distance between the pumping well and the stream boundary [8].  
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Fig. 16.1 Well near a stream 

Fig. 16.2 shows an equivalent hydraulic system in an aquifer of infinite areal extend. For the equivalent hydraulic system, 

the time drawdown relationship for the pumping well and also for the imagery recharge well can be obtained separately. 

The actual drawdown can be obtained using the principle of superposition.  

 

Fig. 16.2 Equivalent hydraulic system in a aquifer of infinite areal extend 

Consider the Fig. 16.3 below. The pumping well is at a distance of x from the stream boundary. In order to calculate the 

actual drawdown at the observation location, an image well is  

 

Fig. 16.3 Pumping well, Observation well and Image well 
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considered at a distance of x on the other side of the line of zero drawdown. The distance of the observation well from the 

pumping well is r and from the image well is r'.  

For the steady state condition of a confined aquifer, the drawdown at the observation well can be obtained as  

 (   )  
 

   
  .

 

 
/  

  

   
  .

 

  
/                                                             (16.1) 

  (   )  
 

   
  .

  

 
/                                                                          (16.2)  

  (   )  
 

   
  .

(   )    

(   )    /                                                                   (16.3)  

For the unsteady condition, the drawdown at   at any time   can be obtained as  

 (   )  
 

   
 .

    

   
/  

  

   
 .

     

   
/                                                       (16.4)  

 (   )  
 

   
0 .

    

   
/   .

     

   
/1                                                        (16.5)  

17.    WELL NEAR AN IMPERMEABLE BOUNDARY 

Fig. 17.1 shows a well near an impermeable boundary. In this case, the actual drawdown at the  

 

Fig. 17.1 Well near an impermeable boundary 

impermeable boundary will be more than the drawdown calculated considering infinite areal extends of the aquifer 

medium. This problem can be solved by considering an imaginary pumping well at a distance equal to the distance 

between the pumping well and the image pumping well. Fig. 17.2 has shown the equivalent hydraulic system in an aquifer 

with infinite areal extent. For the equivalent hydraulic system, the time drawdown relationship for the pumping well and 

also for the imagery recharge well can be obtained separately. The actual drawdown can be obtained using the principle of 

superposition [8].  

 

Fig. 17.2 Equivalent hydraulic system in a aquifer of infinite areal extend 
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Consider the Fig. 17.3 below. The pumping well is at a distance of x from the impermeable boundary. In order to calculate 

the actual drawdown at the observation location, an image well is considered at a distance of x on the other side of the line 

of zero flow. The distance of the observation well from the pumping well is   and from the image well is r'. For the 

unsteady condition, the drawdown at a distance   at any time t can be obtained as,  

 (   )  
 

   
 .

    

   
/  

 

   
 .

     

   
/                                                    (17.1) 

 (   )  
 

   
0 .

    

   
/   .

     

   
/1                                                      (17.2) 

 

Fig. 17.3 Pumping well, observation well and image well 

The transmissivity (T) of a confined aquifer can be calculated using the equation (8.14). This  equation was derived for 

steady state condition. It may be noted that it is difficult to obtain steady state pumping drawdown data as one has to 

continue the pumping for longer period. The unsteady flow data can be used to calculate both hydraulic conductivity and 

transmissivity and storage coefficient of an aquifer. In this lecture we will mainly discuss the estimation of aquifer 

parameters using unsteady flow data.  

18. TWO-DIMENSIONAL CONFINED AQUIFER 

Large open cuts are a feature of many engineering projects. These are particularly prominent in open-cut mining, such as 

strip mining of coal. An important aspect of such operations is the analysis of slope stability for which an estimate of the 

groundwater discharge from the seams is required (Nguyen & Ngeyen, 1982). An excessive discharge will also make an 

efficient mining operation difficult [6]. 

The literature on the analysis of groundwater flow and methods of field testing is extensive but most of the solutions 

available were derived for well flow problems, e.g. Boulton (1954, 1965), de Wiest (1963), Glover (1966), Raudkivi & 

Callander (1976) , Sternberg (1969), Walton (1970). Mansur & Kaufman (1962) derived an "equivalent well" expression 

for an excavated pit and then applied well flow formulae. More recently the finite element method has become popular as 

a tool for solving groundwater flow problems, e.g. Neuman & Witherspoon (1970, 1971) , Wilson & Hamilton (1978) , 

Cushman et al. (1979). However, it is highly desirable to have a set of simple, though approximate, formulae for quick 

and easy estimation of groundwater flow into the above-mentioned large excavations. 

The following is a presentation of some analytical solutions to the two-dimensional equations which describe the transient 

groundwater flow into large excavations. For confined aquifer flows the solutions are obtained by the Laplace 

transformation of the differential equations involved. The unconfined flow case is presented using the Dupuit 

approximation as originally given by Polubarinova-Kochina (1962). 

The equation for unsteady Darcian flow of water in a confined elastic aquifer is 

    
 

 

  

  
                                                                          (18.1) 
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where                            ; is piezometric head;       is the dimensionless storage coefficient; 

  is the specific storage; b is the thickness of the aquifer;      is the transmissivity      is the permeability (    ) 

of the aquifer. Equation (24.1) can be written for the two-dimensional case as 

   

    
 

 

  

  
                                                                         (18.2) 

where        is the drawdown from the initial piezometric head    and        

Constant Drawdown  

The boundary conditions are as follows. 

Initially:                                                                  (   )                                                                            (18.3) 

at excavation face :                                                  (   )                                                                   (18.4) 

and as    :                                                        (   )                                                                             (18.5) 

 The Laplace transforms of equations (18.2)-(18.5) are 

   ̅

    
 

 
 ̅                                                                           (18.6) 

 ̅(   )  
  

 
                                                                            (18.7) 

 ̅(   )                                                                                (18.8) 

giving the solution 

 ̅  (    )    , (   )
 

  -                                                                (18.9) 

The inverse Laplace transform of equation (18.9), the drawdown equation for this case, is 

        ,   (  )
 

 -                                                                  (18.10) 

where     ( ) is the complementary error function, defined as 

    ( )       ( )    (  √ )∫     
 

 

   

which is tabulated in mathematical handbooks (e.g. Abramovitz & Stegun, 1972) . 

The discharge per unit length of the excavation face is 

    
  

  
|
   

                                                                          (18.11) 

Constant Discharge 

The boundary conditions are as follows: 

 (   )                                                                                   (18.12) 

 (   )                                                                                   (18.13) 

and the flow rate (     ) per unit length of the excavation face (one face) 

    
  

  
|
   

                                                                           (18.14)  

The Laplace-transform solution of equation (18.2) with these boundary conditions (equations (18.12)-(18.14)) is 

 ̅  
 

 

   , (   )
 
  -

 (   )
 
 

                                                                            (18.15) 
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of which the inverse transform is 

  
 √ 

 
{ (   )

 

    ,       -  
 

√ 
    

 

 (  )
 
 

}                                      (18.16) 

The total flow into the excavation from an aquifer initially under static conditions (horizontal piezometric surface) is 

    
  

  
|
   

                                                              (18.17) 

and from an aquifer with initial steady flow with gradient   

      
  

  
|
   

                                                              (18.18) 

19.    LEAKY AQUIFERS 

Leaky (semi-confined) aquifers are those where the individual aquifers (layers) are separated from each other by layers 

with very much lower permeability than the aquifer layers [6]. 

The unsteady flow equation, corresponding to equation (18.1), can be written as [9] 

    
 

   
 

 

  

  
                                                                  (19.1) 

where       is the drawdown;   √        is the leakage factor;   and   and    and   are the permeability and 

thickness of the aquifer and aquitard, respectively. 

Constant Drawdown 

For two-dimensional flow equation (19.1) becomes 

   

    
 

   
 

 

  

  
                                                                    (19.2) 

With boundary conditions given by equations (18.3)-(18.5) the Laplace transform solution is 

 ̅  (    )    * ,(   )      -
 

  +                                                      (19.3) 

of which the inverse, the drawdown, is  

       (    )  (√   )  ,   (    )     ( )     (   )     ( )-                 (19.4) 

where 

  
(  )

 
 

 
 

 

 (  )
 
 

 

and 

  
(  )

 
 

 
 

 

 (  )
 
 

 

At steady state, as   tends to infinity 

    ( )      ( )     

and  

       (    )                                                              (19.5) 

which is the solution of the steady state version of equation (19.2) i.e. where the right-hand side is equal to zero.  

For large values of   equation (19.4) can be approximated to 
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    *   (    )  (√   )     ,   (  )
 

 -+                                       (19.6) 

Constant Discharge 

Here the boundary conditions given by (18.12) and (18.13) apply to equation (19.2) and lead to the Laplace transform 

solution 

 ̅    ,  (        )
 

 -    – ,(        )
 

 -                                  (19.7) 

of which the inverse is  

  (    )     (    )  (√   )(    ),     (    )     ( )     (   )     ( )       (19.8) 

where the individual terms are as defined before. 

20.    CONCLUSION 

Simple analytical solutions have been obtained for two-dimensional confined, leaky and unconfined groundwater flows. 

The confined and leaky aquifer solutions obtained by the Laplace transformation of the unsteady flow equation are in 

terms of the error function and its complementary part. The input parameters required for the solution are the piezometric 

head, the transmissivity and storage coefficient of the aquifer. The solutions provide a simple method for computing the 

phreatic surface at any time and from its slope the flow rate. The flow rate over a time interval is the difference of the 

areal integrals of the water table curves divided by the time interval. 
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